Тема № 58 «Прямые на плоскости и в пространстве. Плоскости в пространстве»

В заданиях ЕГЭ типа С2 данная тема занимает весомое место (более 50% всех заданий С2).

Основные определения и теоремы

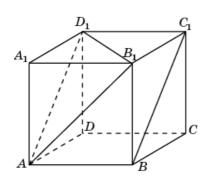
- 1. Две прямые в пространстве называются *параллельными*, если они лежат в одной плоскости и не пересекаются.
- 2. Прямые, которые не пересекаются и не лежат в одной плоскости, называются скрещивающимися.
- 3. Через точку вне данной прямой можно провести прямую, параллельную этой прямой, и притом только одну.
- 4. Через точку вне данной плоскости можно провести плоскость, параллельную данной, и притом только одну.
- 5. *Признак параллельности прямой и плоскости:* Если прямая, принадлежащая плоскости, параллельна какой-нибудь прямой в этой плоскости, то она параллельна и самой плоскости.
- 6. Две плоскости называются параллельными, если они не пересекаются.
- 7. Признак параллельности плоскостей: Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.
- 8. Прямая, пересекающая плоскость, называется *перпендикулярной* этой плоскости, если она перпендикулярна любой прямой, которая лежит в данной плоскости и проходит через точку пересечения.
- 9. *Признак перпендикулярности прямой и плоскости:* Если прямая перпендикулярна двум пересекающимся прямым в плоскости, то она перпендикулярна данной плоскости.
- 10.Теорема о трех перпендикулярах:
 - Для того, чтобы прямая лежащая в плоскости, была перпендикулярна наклонной, необходимо и достаточно, чтобы эта прямая была перпендикулярна проекции наклонной.
- 11. Если прямая, пересекающая плоскость, перпендикулярна двум прямым, лежащим в этой плоскости и проходящим через точку пересечения данной прямой и плоскости, то она перпендикулярна плоскости.
- 12. Если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой.
- 13. Если две прямые перпендикулярны одной и той же плоскости, то они параллельны.
- 14. Если прямая, лежащая в плоскости, перпендикулярна проекции наклонной, то она перпендикулярна и самой наклонной.
- 15. Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, расположенной в этой плоскости, то она параллельна этой плоскости.
- 16.Если прямая параллельна плоскости, то она параллельна некоторой прямой на этой плоскости.
- 17. Если прямая и плоскость перпендикулярны одной и той же прямой, то они параллельны.

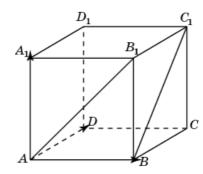
18. Все точки прямой, параллельной плоскости, одинаково удалены от этой плоскости.

1. Угол между прямыми

- *Углом между двумя пересекающимися прямыми* называется наименьший из углов, образованных при пересечении прямых.
- $0^{\circ} < \angle(a, b) \leq 90^{\circ}$.
- *Углом между двумя скрещивающимися прямыми* называется угол между пересекающимися прямыми, соответственно параллельными данным скрещивающимся.

1.1. В единичном кубе $A...D_1$ найдите угол между прямыми AB_1 и BC_1 . Решение:



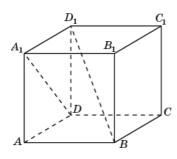


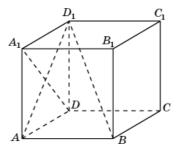
1-й способ. Прямая AD_1 параллельна прямой BC_1 и, следовательно, угол между прямыми AB_1 и BC_1 равен углу B_1AD_1 . Треугольник B_1AD_1 равносторонний и, значит, угол B_1AD_1 равен 60° .

2-й способ. Введем систему координат, считая началом координат точку A, осями координат — прямые AB, AD, AA_1 . Вектор $\overrightarrow{AB_1}$ имеет координаты (1, 0, 1). Вектор $\overrightarrow{BC_1}$ имеет координаты (0, 1, 1). Воспользуемся формулой нахождения косинуса угла ϕ между векторами $\overrightarrow{AB_1}$ и $\overrightarrow{BC_1}$. Получим $\cos \phi = \frac{1}{2}$ и, значит, угол ϕ равен 60° . Следовательно, искомый угол между прямыми AB_1 и BC_1 равен 60° .

Ответ 60° .

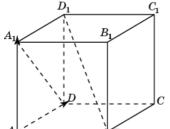
1.2. В единичном кубе $A...D_1$ найдите угол между прямыми DA_1 и BD_1 . Решение:





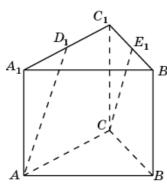
1-й способ. Рассмотрим ортогональную проекцию AD_1 прямой BD_1 на плоскость ADD_1 . Прямые AD_1 и DA_1 перпендикулярны. Из теоремы о трех перпендикулярах следует, что прямые DA_1 и BD_1 также пер-

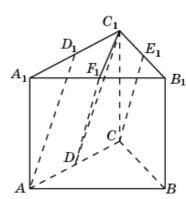
пендикулярны, т.е. искомый угол между прямыми DA_1 и BD_1 равен 90° . 2-й способ. Введем систему координат, считая началом координат точку A, осями координат — прямые AB, AD, AA_1 . Вектор $\overrightarrow{DA_1}$ имеет координаты (0, -1, 1). Вектор $\overrightarrow{BD_1}$ имеет координаты (-1, 1, 1). Скалярное произведение этих векторов равно нулю и, значит, искомый угол между прямыми DA_1 и BD_1 равен 90° .



Ответ 90°.

1.3. В правильной треугольной призме $ABCA_1B_1C_1$, все ребра которой равны 1, найдите косинус угла между прямыми AD_1 и CE_1 , где D_1 и E_1 — соответственно середины ребер A_1C_1 и B_1C_1 . Решение:



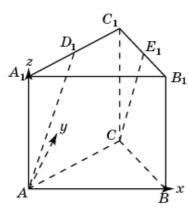


1-й способ. Обозначим D и F_1 соответственно середины ребер AC и A_1B_1 .

 $DC_1 \mid \mid AD_1$ и $DF_1 \mid \mid CE_1$, поэтому $\angle(AD_1;CE_1) = \angle C_1DF_1$. ΔC_1DF_1 равнобедренный,

$$DC_1 = DF_1 = \frac{\sqrt{5}}{2}, C_1F_1 = \frac{\sqrt{3}}{2}.$$

Используя теорему косинусов, получаем $\cos \angle C_1 DF_1 = 0.7$.



2-й способ. Введем систему координат, считая началом координат точку *A*, как показано на рисунке. Точ-

ка C имеет координаты $\left(\frac{1}{2},\frac{\sqrt{3}}{2},0\right)$, точка D_1 имеет

координаты $\left(\frac{1}{4},\frac{\sqrt{3}}{4},1\right)$, точка E_1 имеет координаты

$$\left(rac{3}{4},rac{\sqrt{3}}{4},1
ight)$$
. Вектор $\overrightarrow{AD_1}$ имеет координаты $\left(rac{1}{4},rac{\sqrt{3}}{4},1
ight)$

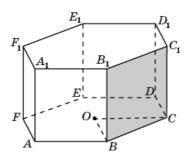
Вектор $\overrightarrow{CE_1}$ имеет координаты $\left(\frac{1}{4},-\frac{\sqrt{3}}{4},1\right)$. Косинус угла между прямыми AD_1

и CE_1 равен косинусу угла между векторами $\overrightarrow{AD_1}$ и $\overrightarrow{CE_1}$. Воспользуемся формулой нахождения косинуса угла ϕ между векторами. Получим $\cos \phi = 0.7$. Ответ 0,7.

2. Угол между прямой и плоскостью

- Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость.
- $0^{\circ} < \angle(a, \alpha) \leq 90^{\circ}$.
- **2.1.** В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите угол между прямой AF и плоскостью BCC_1 .



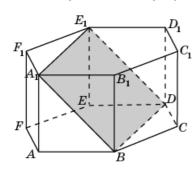


Решение. Пусть O — центр нижнего основания призмы. Прямая BO параллельна AF. Так как плоскости ABC и BCC_1 перпендикулярны, то искомым углом будет угол OBC. Так как треугольник OBC рав-

носторонний, то этот угол будет равен 60° .

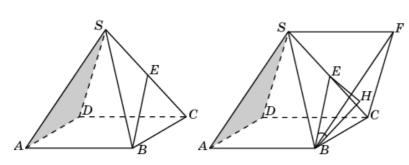
Ответ 60°.

2.2. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите угол между прямой CC_1 и плоскостью BDE_1 .



Решение. Так как прямые BB_1 и CC_1 параллельны, то искомый угол будет равен углу между прямой BB_1 и плоскостью BDE_1 . Прямая BD, через которую проходит плоскость BDE_1 , перпендикулярна плоскости ABB_1 и, значит, плоскость BDE_1 перпендикулярна плоскости ABB_1 . Следовательно, искомый угол будет равен углу A_1BB_1 , т.е. равен 45° .

2.3. В правильной четырехугольной пирамиде *SABCD*, все ребра которой равны 1, найдите синус угла между прямой *BE* и плоскостью *SAD*, где E — середина ребра SC.



Решение. Через вершину *S* проведем прямую, параллельную прямой *AB*, и отложим на ней отрезок *SF*, равный отрезку *AB*. В тетраэдре *SBCF* все ребра равны 1 и плоскость *BCF* параллель-

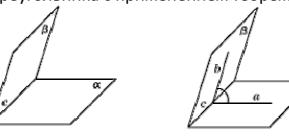
на плоскости *SAD*. Перпендикуляр *EH*, опущенный из точки *E* на плоскость *BCF*, равен половине высоты тетраэдра, т.е. равен $\frac{\sqrt{6}}{6}$. Угол между прямой *BE* и плоскостью *SAD* равен углу *EBH*, синус которого равен $\frac{\sqrt{2}}{3}$.

Ответ
$$\frac{\sqrt{2}}{3}$$
.

3. Угол между двумя плоскостями

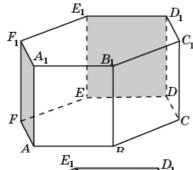
- **Двугранный угол**, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру.
- Величина **двугранного угла** принадлежит промежутку (0° ; 180°).

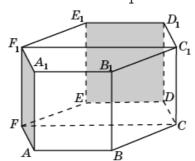
- Величина угла между пересекающимися плоскостями принадлежит промежутку (0º; 90º].
- Построение линейного угла двугранного угла, образованного плоскостями
 α и β: Строим два перпендикуляра α∈ α и b∈ β к прямой пересечения
 плоскостей; а его величина находится из прямоугольного треугольника
 или из некоторого треугольника с применением теоремы косинусов:



. 1 P

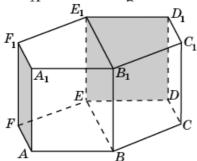
3.1. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите угол между плоскостями AFF_1 и DEE_1 .





Решение:

1-й способ. Так как плоскость FCC_1 параллельна плоскости DEE_1 , то искомый угол равен углу между плоскостями AFF_1 и FCC_1 . Так как плоскости

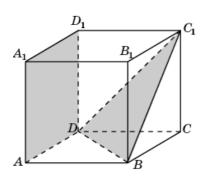


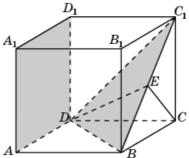
 AFF_1 и FCC_1 перпендикулярны плоскости ABC, то соответствующим линейным углом будет угол AFC, который равен 60° .

2-й способ. Так как плоскость AFF_1 параллельна плоскости BEE_1 , то искомый угол равен углу между плоскостями BEE_1 и DEE_1 . Так как плоскости BEE_1 и DEE_1 перпендикулярны плоскости ABC, то соответст-

вующим линейным углом будет угол *BED*, который равен 60° . Ответ 60° .

3.2. В единичном кубе $A...D_1$ найдите тангенс угла между плоскостями ADD_1 и BDC_1 .





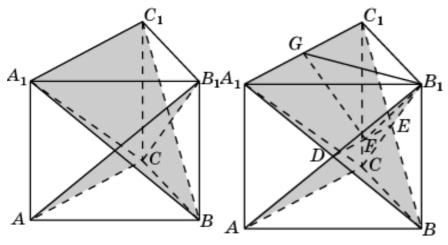
Решение: Так как плоскость ADD_1 параллельна плоскости BCC_1 , то искомый угол равен углу между плоскостями BCC_1 и BDC_1 . Пусть E — середина отрезка BC_1 . Тогда прямые CE и DE будут перпендикулярны прямой BC_1

и, следовательно, угол $\it CED$ будет линейным углом между плоскостями $\it BCC_1$ и

 BDC_1 . Треугольник *CED* прямоугольный, катет *CD* равен 1, катет *CE* равен $\frac{\sqrt{2}}{2}$. Следовательно, $tg \angle CED = \sqrt{2}$.

Ответ $\sqrt{2}$.

3.3. В правильной треугольной призме $ABCA_1B_1C_1D_1$, все ребра которой равны 1, найдите косинус угла между плоскостями ACB_1 и BA_1C_1 .

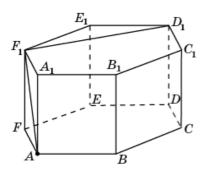


Решение: Пусть DE — линия пересечения данных плоскостей, F — середина отрезка DE, G — середина отрезка A_1C_1 . Угол GFB_1 является линейным углом между данными плоскостями. В треугольнике GFB_1 имеем: $FG = FB_1$ =

$$\frac{\sqrt{7}}{4}$$
, $GB_1=\frac{\sqrt{3}}{2}$. По теореме косинусов находим $\cos\angle GFB_1=\frac{1}{7}$. Ответ $\frac{1}{7}$.

4. Расстояние от точки до прямой

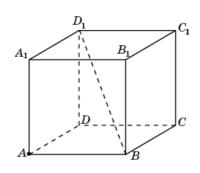
- *Расстояние от точки до прямой*, не содержащей эту точку, есть длина отрезка перпендикуляра, проведенного из этой точки на прямую.
- *Расстояние между двумя параллельными прямыми* равно длине отрезка их общего перпендикуляра.
- *Расстояние между двумя параллельными прямыми* равно расстоянию от любой точки одной из этих прямых до другой прямой.

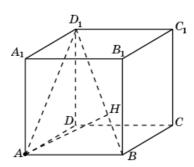


4.1. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите расстояние от точки A до прямой D_1F_1 .

Решение: Так как прямая D_1F_1 перпендикулярна плоскости AFF_1 , то отрезок AF_1 будет искомым перпендикуляром, опущенным из точки A на прямую D_1F_1 . Его длина равна $\sqrt{2}$.

4.2. В единичном кубе $A...D_1$ найдите расстояние от точки A до прямой BD_1 . Решение:





1-й способ. Искомым перпендикуляром является высота AH прямоугольного треугольника ABD_1 , в котором AB=1, $AD_1=\sqrt{2}$, $BD_1=\sqrt{3}$. Для площади S этого треугольника имеют место равенства $2S=AB\cdot AD_1=BD_1\cdot AH$. От-

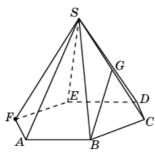
куда находим $AH = \frac{\sqrt{6}}{3}$.

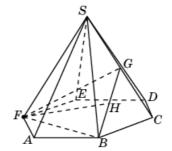
2-й способ. Искомым перпендикуляром является высота AH прямоугольного треугольника ABD_1 , в котором AB=1, $AD_1=\sqrt{2}$, $BD_1=\sqrt{3}$. Треугольники BAD_1 и BHA подобны по трем углам. Следовательно, $AD_1:BD_1=AH:AB$. Откуда находим $AH=\frac{\sqrt{6}}{3}$.

3-й способ. Искомым перпендикуляром является высота AH прямоугольного треугольника ABD_1 , в котором AB=1, $AD_1=\sqrt{2}$, $BD_1=\sqrt{3}$. Откуда $\sin\angle ABD_1=\frac{\sqrt{6}}{3}$ и, следовательно, $AH=AB\cdot\sin\angle ABH=\frac{\sqrt{6}}{3}$.

Ответ $\frac{\sqrt{6}}{3}$.

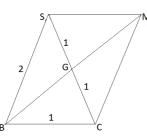
4.3. В правильной шестиугольной пирамиде *SABCDEF*, стороны основания которой равны 1, а боковые ребра равны 2. Найти расстояние от точки F до пря-





мой BG, где G — середина ребра SC.

Решение: Искомое расстояние от точки F до прямой BG равно высоте FH треугольника FBG, в котором по теореме косинусов в треугольнике AFB: $FB = FG = \frac{1}{2}$



 $\sqrt{3}$. Найдем BG, как половину диагонали параллелограмма, который получим, если достроим треугольник BCG до параллелограмма CBSM, затем воспользуемся формулой: $d_1^2 + d_2^2 = 2(a^2 + b^2)$. BG = $\frac{\sqrt{6}}{2}$. По теореме

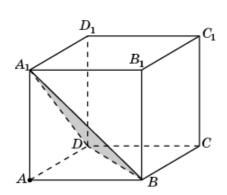
формулой: $d_1^2+d_2^2=2(a^2+b^2)$. BG = $\frac{\sqrt{6}}{2}$. По теореме Пифагора в треугольнике BFH находим FH:

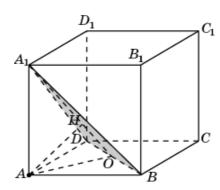
 $FH = \sqrt{FB^2 - BH^2} = \sqrt{3 - \left(\frac{\sqrt{6}}{4}\right)^2} = \frac{\sqrt{42}}{4}.$

Ответ
$$\frac{\sqrt{42}}{4}$$

5. Расстояние от точки до плоскости

- *Расстояние от точки до плоскости*, не содержащей эту точку, есть длина отрезка перпендикуляра, опущенного из этой точки на плоскость.
- *Расстояние между прямой и параллельной ей плоскостью* равно длине их общего перпендикуляра.
- *Расстояние между прямой и параллельной ей плоскостью* равно расстоянию от любой точки этой прямой до плоскости.
- *Расстояние между двумя параллельными плоскостями* равно длине их общего перпендикуляра.
- *Расстояние между двумя параллельными плоскостями* равно расстоянию между точкой одной из этих плоскостей и другой плоскостью.
- **5.1.** В единичном кубе $A...D_1$ найдите расстояние от точки A до плоскости BDA_1 .





Решение:

C₁ 1-й способ. Пусть О – середина отрезка ВD. Прямая ВD перпендикулярна плоскости АОА₁. Следовательно, плоскости ВDА₁ и АОА₁ перпендикулярны. Искомым перпендикуля-

ром, опущенным из точки A на плоскость BDA_1 , является высота AH прямочгольного треугольника AOA_1 , в котором $AA_1=1$, $AO=\frac{\sqrt{2}}{2}$, $OA_1=\frac{\sqrt{6}}{2}$. Для площади S этого треугольника имеют место равенства $2S=AO\cdot AA_1=OA_1\cdot AH$. Откуда находим $AH=\frac{\sqrt{3}}{3}$.

2-й способ. Пусть O — середина отрезка BD. Прямая BD перпендикулярна плоскости AOA_1 . Следовательно, плоскости BDA_1 и AOA_1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA_1 , является

высота AH прямоугольного треугольника AOA_1 , в котором AA_1 = 1, AO = $\frac{\sqrt{2}}{2}$,

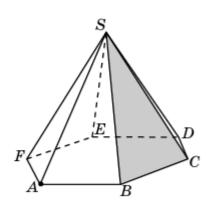
 $\mathit{OA}_1 = \frac{\sqrt{6}}{2}$. Треугольники AOA_1 и HOA подобны по трем углам. Следовательно,

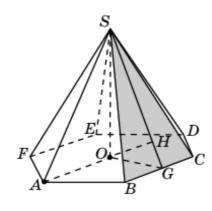
 $AA_1:OA_1 = AH:AO$. Откуда находим $AH = \frac{\sqrt{3}}{3}$.

3-й способ. Пусть O — середина отрезка BD. Прямая BD перпендикулярна плоскости AOA_1 . Следовательно, плоскости BDA_1 и AOA_1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA_1 , является

высота AH прямоугольного треугольника AOA_1 , в котором $AA_1=1$, $AO=\frac{\sqrt{2}}{2}$, $OA_1=\frac{\sqrt{6}}{2}$. Откуда $\sin\angle AOA_1=\frac{\sqrt{6}}{3}$ и, следовательно, $AH=AO\cdot\sin\angle AOH=\frac{\sqrt{3}}{3}$. Ответ $\frac{\sqrt{3}}{3}$.

5.2. В правильной шестиугольной пирамиде *SABCDEF*, стороны основания которой равны 1, а боковые ребра равны 2, найдите расстояние от точки A до плоскости *SBC*.





Решение:

1-й способ. Пусть *O* — центр основания пирамиды. Прямая *AO* параллельна прямой *BC* и, значит, параллельна плоскости *SBC*. Следовательно, искомое расстояние равно расстоя-

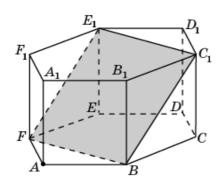
нию от точки O до плоскости SBC. Пусть G — середина отрезка BC. Тогда прямая OG перпендикулярна BC и искомым перпендикуляром, опущенным из точки O на плоскость SBC, является высота OH прямоугольного треугольника SOG. В этом треугольнике $OG = \frac{\sqrt{3}}{2}$, $SG = \frac{\sqrt{15}}{2}$, $SO = \sqrt{3}$. Для площади S этого треугольника имеют место равенства $2S = OG \cdot SO = SG \cdot OH$. Откуда находим $OH = \frac{\sqrt{15}}{5}$.

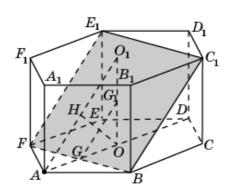
2-й способ. Пусть O — центр основания пирамиды. Прямая AO параллельна прямой BC и, значит, параллельна плоскости SBC. Следовательно, искомое расстояние равно расстоянию от точки O до плоскости SBC. Пусть G — середина отрезка BC. Тогда прямая OG перпендикулярна BC и искомым перпендикуляром, опущенным из точки O на плоскость SBC, является высота OH прямочгольного треугольника SOG. В этом треугольнике $OG = \frac{\sqrt{3}}{2}$, $SG = \frac{\sqrt{15}}{2}$, $SO = \frac{\sqrt{15}}{2}$

 $\sqrt{3}$. Треугольники SOG и OHG подобны по трем углам. Следовательно, SO:SG=OH:OG. Откуда находим $OH=\frac{\sqrt{15}}{5}$.

Ответ
$$\frac{\sqrt{15}}{5}$$
 .

5.3. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите расстояние от точки A до плоскости BFE_1 .

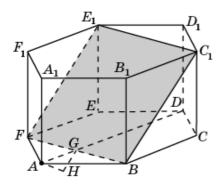




Решение:

1-й способ. Пусть O и O_1 — центры оснований призмы. Прямая AO_1 параллельна плоскости BFE_1 и, следовательно, расстояние от точки A до плоскости BFE_1 равно расстоянию от прямой AO_1 до плоскости BFE_1 . Плоскость AOO_1 перпендикулярна плоскости BFE_1 и, следовательно, расстояние от прямой AO_1 до плоскости BFE_1 равно расстоянию от прямой AO_1 до линии пересечения GG_1 плоскостей AOO_1 и BFE_1 . Треугольник AOO_1 прямоугольный, $AO = OO_1 = 1$, GG_1 — его средняя линия. Следовательно, расстояние между прямыми AO_1 и GG_1

равно половине высоты *OH* треугольника AOO_1 , т.е. равно $\frac{\sqrt{2}}{4}$.



2-й способ. Пусть G — точка пересечения прямых AD и BF. Угол между прямой AD и плоскостью BFE_1 равен углу между прямыми BC и BC_1 и равен 45° . Перпендикуляр AH, опущенный из точки A на плоскость

BFE₁, равен $AG \cdot \sin 45^\circ$. Так как AG = 0.5, то $AH = \frac{\sqrt{2}}{4}$

Ответ $\frac{\sqrt{2}}{4}$.

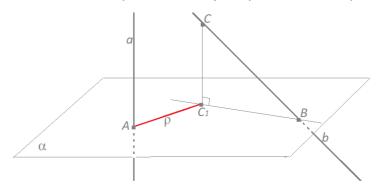
6. Расстояние между скрещивающимися прямыми

• *Расстояние между двумя скрещивающимися прямыми* равно длине отрезка их общего перпендикуляра.

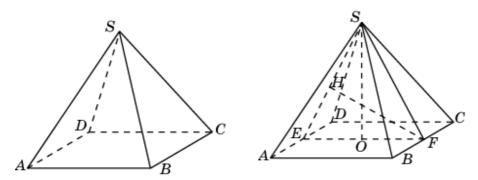
Способы нахождения расстояния между скрещивающимися прямыми:

- 1. Найти длину общего перпендикуляра к этим прямым, если его можно построить
- 2. Построить плоскость, содержащую одну из прямых и параллельную второй. Тогда искомое расстояние равно расстоянию от какой-нибудь точки второй прямой до построенной плоскости.

- 3. Заключить данные прямые в параллельные плоскости, проходящие через данные скрещивающиеся прямые, и найти расстояние между этими плоскостями.
- 4. Построить плоскость, перпендикулярную одной из данных прямых, и построить на этой плоскости ортогональную проекцию второй прямой:



6.1. В правильной четырехугольной пирамиде *SABCD*, все ребра которой равны 1, найдите расстояние между прямыми *SA* и *BC*.



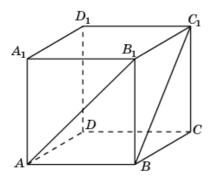
Решение: Прямая BC параллельна плоскости SAD, в которой лежит прямая SA. Следовательно, расстояние между прямыми SA и BC равно расстоянию от прямой BC до плоскости SAD.

Пусть E и F соответственно середины ребер AD и BC. Тогда искомым перпендикуляром будет высота FH треугольника SEF. В треугольнике SEF имеем: EF = 1, SE

= SF =
$$\frac{\sqrt{3}}{2}$$
, высота *SO* равна $\frac{\sqrt{2}}{2}$. Для площади *S* треугольника *SEF* имеют место

равенства $2S = EF \times SO = SE \times FH$, из которых получаем $FH = \frac{EF \times SO}{SE} = \frac{\sqrt{6}}{3}$.

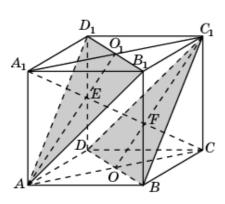
Otbet $\frac{\sqrt{6}}{3}$.



6.2. В единичном кубе $A...D_1$ найдите расстояние между прямыми AB_1 и BC_1 .

Решение: Плоскости AB_1D_1 и BDC_1 , в которых лежат данные прямые, параллельны. Следовательно, расстояние между этими прямыми равно расстоянию между соответствующими плоскостями.

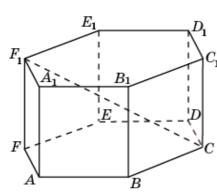
Диагональ CA_1 куба перпендикулярна этим плоскостям. Обозначим E и F точки пересечения диагонали CA_1 соответственно с плоскостями AB_1D_1 и BDC_1 .



Длина отрезка EF будет равна расстоянию между прямыми AB_1 и BC_1 . Пусть O и O_1 соответственно центры граней ABCD и $A_1B_1C_1D_1$ куба. В треугольнике ACE отрезок OF параллелен AE и проходит через середину AC. Следовательно, OF — средняя линия треугольника ACE и, значит, EF = FC. Аналогично доказывается, что O_1E — средняя линия треугольника A_1C_1F и, значит, A_1E = EF. Таким образом, EF составляет одну треть диаго-

нали
$$CA_1$$
, т.е. $EF = \frac{\sqrt{3}}{3}$.

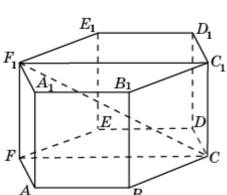
Ответ $\frac{\sqrt{3}}{3}$.



6.3. В правильной шестиугольной призме $A...F_1$, все ребра которой равны 1, найдите расстояние между прямыми AA_1 и CF_1 .

Решение. Расстояние между прямыми AA_1 и CF_1 равно расстоянию между параллельными плоскостями ABB_1 и CFF_1 , в которых лежат эти пря-

мые. Оно равно $\frac{\sqrt{3}}{2}$.



Ответ $\frac{\sqrt{3}}{2}$.